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Exercises for 8.4

Exercise 8.4.1 In each case find the QR-factorization of
A.

A =

[
1 −1
−1 0

]
a. A =

[
2 1
1 1

]
b.

A =




1 1 1
1 1 0
1 0 0
0 0 0


c. A =




1 1 0
−1 0 1

0 1 1
1 −1 0


d.

Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint: Theo-
rem 5.4.3.]

b. Show that A has a QR-factorization if and only if
A has independent columns.

c. If AB has a QR-factorization, show that the same
is true of B but not necessarily A.

[Hint: Consider AAT where A =

[
1 0 0
1 1 1

]
.]

Exercise 8.4.3 If R is upper triangular and invertible,
show that there exists a diagonal matrix D with diagonal
entries ±1 such that R1 = DR is invertible, upper trian-
gular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is in-
vertible and upper triangular. [Some authors call this a
QR-factorization of A.] Show that there is a diagonal ma-
trix D with diagonal entries ±1 such that A = (QD)(DR)
is the QR-factorization of A. [Hint: Preceding exercise.]

8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the roots
of the characteristic polynomial. This is difficult for large matrices and iterative methods are much better.
Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers of a
square matrix, and the eigenvalues were needed to do this. In this section, we are interested in efficiently
computing eigenvalues, and it may come as no surprise that the first method we discuss uses the powers
of a matrix.

Recall that an eigenvalue λ of an n×n matrix A is called a dominant eigenvalue if λ has multiplicity
1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue exists,
one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant eigenvector
λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·
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In general, we define
xk+1 = Axk for each k ≥ 0

If the first estimate x0 is good enough, these vectors xn will approximate the dominant eigenvector λ (see
below). This technique is called the power method (because xk = Akx0 for each k ≥ 1). Observe that if z

is any eigenvector corresponding to λ , then

z·(Az)
‖z‖2 = z·(λz)

‖z‖2 = λ

Because the vectors x1, x2, . . . , xn, . . . approximate dominant eigenvectors, this suggests that we define
the Rayleigh quotients as follows:

rk =
xk·xk+1
‖xk‖2 for k ≥ 1

Then the numbers rk approximate the dominant eigenvalue λ .

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of A =

[
1 1
2 0

]
.

Solution. The eigenvalues of A are 2 and −1, with eigenvectors

[
1
1

]
and

[
1
−2

]
. Take

x0 =

[
1
0

]
as the first approximation and compute x1, x2, . . . , successively, from

x1 = Ax0, x2 = Ax1, . . . . The result is

x1 =

[
1
2

]
, x2 =

[
3
2

]
, x3 =

[
5
6

]
, x4 =

[
11
10

]
, x3 =

[
21
22

]
, . . .

These vectors are approaching scalar multiples of the dominant eigenvector

[
1
1

]
. Moreover, the

Rayleigh quotients are
r1 =

7
5 , r2 =

27
13 , r3 =

115
61 , r4 =

451
221 , . . .

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, . . . , λm be eigenvalues of A with λ1 dominant and
let y1, y2, . . . , ym be corresponding eigenvectors. What is required is that the first approximation x0 be a
linear combination of these eigenvectors:

x0 = a1y1 +a2y2 + · · ·+amym with a1 6= 0

If k ≥ 1, the fact that xk = Akx0 and Akyi = λ k
i yi for each i gives

xk = a1λ k
1 y1 +a2λ k

2 y2 + · · ·+amλ k
mym for k ≥ 1

Hence
1

λ k
1

xk = a1y1 +a2

(
λ2
λ1

)k

y2 + · · ·+am

(
λm

λ1

)k

ym
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The right side approaches a1y1 as k increases because λ1 is dominant
(∣∣∣ λi

λ1

∣∣∣< 1 for each i > 1
)

. Because

a1 6= 0, this means that xk approximates the dominant eigenvector a1λ k
1 y1.

The power method requires that the first approximation x0 be a linear combination of eigenvectors.
(In Example 8.5.1 the eigenvectors form a basis of R2.) But even in this case the method fails if a1 = 0,

where a1 is the coefficient of the dominant eigenvector (try x0 =

[
−1

2

]
in Example 8.5.1). In general,

the rate of convergence is quite slow if any of the ratios
∣∣∣ λi

λ1

∣∣∣ is near 1. Also, because the method requires

repeated multiplications by A, it is not recommended unless these multiplications are easy to carry out (for
example, if most of the entries of A are zero).

QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the factor-
ization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-algorithm

uses this repeatedly to create a sequence of matrices A1 = A, A2, A3, . . . , as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.
...

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is similar to Ak [in fact,
Ak+1 = RkQk = (Q−1

k
Ak)Qk], and hence each Ak has the same eigenvalues as A. If the eigenvalues of A are

real and have distinct absolute values, the remarkable thing is that the sequence of matrices A1, A2, A3, . . .
converges to an upper triangular matrix with these eigenvalues on the main diagonal. [See below for the
case of complex eigenvalues.]

Example 8.5.2

If A =

[
1 1
2 0

]
as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A1, A2, and A3 are as follows:

A1 =

[
1 1
2 0

]
= Q1R1 where Q1 =

1√
5

[
1 2
2 −1

]
and R1 =

1√
5

[
5 1
0 2

]

A2 =
1
5

[
7 9
4 −2

]
=

[
1.4 −1.8
−0.8 −0.4

]
= Q2R2
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where Q2 =
1√
65

[
7 4
4 −7

]
and R2 =

1√
65

[
13 11

0 10

]

A3 =
1

13

[
27 −5

8 −14

]
=

[
2.08 −0.38
0.62 −1.08

]

This is converging to

[
2 ∗
0 −1

]
and so is approximating the eigenvalues 2 and −1 on the main

diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Eigenvalue Problem (Oxford, England: Oxford University
Press, 1965) or G. W. Stewart, Introduction to Matrix Computations (New York: Academic Press, 1973).
We conclude with some remarks on the QR-algorithm.

Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is chosen and Ak− skI is
factored in the form QkRk rather than Ak itself. Then

Q−1
k AkQk = Q−1

k (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can be greatly improved.

Preliminary Preparation. A matrix such as



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly simplified.
Given an n×n matrix A, a series of orthogonal matrices H1, H2, . . . , Hm (called Householder matrices)
can be easily constructed such that

B = HT
m · · ·HT

1 AH1 · · ·Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B and, because B is
similar to A, it produces the eigenvalues of A.

Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm con-
verges to a block upper triangular matrix where the diagonal blocks are either 1×1 (the real eigenvalues)
or 2×2 (each providing a pair of conjugate complex eigenvalues of A).
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Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigenvalues
and determine corresponding eigenvectors. Then start

with x0 =

[
1
1

]
and compute x4 and r3 using the power

method.

A =

[
2 −4
−3 3

]
a. A =

[
5 2
−3 −2

]
b.

A =

[
1 2
2 1

]
c. A =

[
3 1
1 0

]
d.

Exercise 8.5.2 In each case, find the exact eigenvalues
and then approximate them using the QR-algorithm.

A =

[
1 1
1 0

]
a. A =

[
3 1
1 0

]
b.

Exercise 8.5.3 Apply the power method to

A =

[
0 1
−1 0

]
, starting at x0 =

[
1
1

]
. Does it con-

verge? Explain.

Exercise 8.5.4 If A is symmetric, show that each matrix
Ak in the QR-algorithm is also symmetric. Deduce that
they converge to a diagonal matrix.

Exercise 8.5.5 Apply the QR-algorithm to

A =

[
2 −3
1 −2

]
. Explain.

Exercise 8.5.6 Given a matrix A, let Ak, Qk, and Rk,
k ≥ 1, be the matrices constructed in the QR-algorithm.
Show that Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1) for each k≥ 1
and hence that this is a QR-factorization of Ak.
[Hint: Show that QkRk = Rk−1Qk−1 for each k ≥ 2, and
use this equality to compute (Q1Q2 · · ·Qk)(Rk · · ·R2R1)
“from the centre out.” Use the fact that (AB)n+1 =
A(BA)nB for any square matrices A and B.]

8.6 The Singular Value Decomposition

When working with a square matrix A it is clearly useful to be able to “diagonalize” A, that is to find
a factorization A = Q−1DQ where Q is invertible and D is diagonal. Unfortunately such a factorization
may not exist for A. However, even if A is not square gaussian elimination provides a factorization of
the form A = PDQ where P and Q are invertible and D is diagonal—the Smith Normal form (Theorem
2.5.3). However, if A is real we can choose P and Q to be orthogonal real matrices and D to be real. Such
a factorization is called a singular value decomposition (SVD) for A, one of the most useful tools in
applied linear algebra. In this Section we show how to explicitly compute an SVD for any real matrix A,
and illustrate some of its many applications.

We need a fact about two subspaces associated with an m×n matrix A:

im A = {Ax | x in Rn} and col A = span{a | a is a column of A}

Then im A is called the image of A (so named because of the linear transformationRn→Rm with x 7→Ax);
and col A is called the column space of A (Definition 5.10). Surprisingly, these spaces are equal:

Lemma 8.6.1

For any m×n matrix A, im A = col A.


